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Equilibrium properties of a polymer chain in an Euler fluid
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A field theoretical formulation for the motion of a polymer chain in an Euler Fluid was analyzed.
Using a projection formalism an exact representation of the effective chain action was obtained. The
mean field approximation gives an effective equation of motion for the polymer chain in the Euler
fluid. As a result of the interaction between chain and liquid, we get a general effective friction,
stochastic forces, and an additional attractive contribution to the potential for the polymer chain.
The influence of this contribution to the equilibrium end to end distance and diffusion properties of

the polymer chain are discussed.

PACS number(s): 61.25.Hq, 05.70.Ln, 05.40.+j

I. INTRODUCTION

The determination of the microscopical motion for a
polymer chain in a thermodynamical bath is a compli-
cated multiple-body problem. In principal, there exist
two general possibilities for the determination or for anal-
ysis of the equations of motion of such a many-body sys-
tem ¥ in a thermodynamical bath. On the other hand,
one can use, in the frame of an analytical description,
the complete or effective equations of motion of ¥ in
the phase space or (in the limit of vanishing inertia, the
Brownian limit) in the configuration space or one can
start from the evolution equation of the probability dis-
tribution function of the system ¥. Both ways are closely
connected because one obtains an effective Hamiltonian
from the evolution equation of the probability distribu-
tion function by solving the inverse dynamical problem
[1,2] and obtaining the evolution equation for the dis-
tribution function of the relevant general coordinates of
¥ by a projection formalism [3]. Therefore analytical
investigations in the microscopical motion of a polymer
chain are in the usual Brownian limit bases, in most cases
on a Langevin equation [4,5], Fokker-Planck equations
[6], or projection formalism [7,8], from which an effec-
tive description of the environment dynamics results (for
example, by stochastic forces, diffusion coefficients, or
frictional forces).

On the other hand, the motion of a polymer chain
in a thermodynamical bath can be analyzed by using
well known numerical methods (molecular dynamics [9],
Monte Carlo simulations [10-12], or Brownian dynam-
ics [13]). Generally, there exist two reasonable ways for a
numerical solution of this problem. The first possible nu-
merical realization was based on the investigation of the
detailed microscopic dynamics of the polymer chain and
the thermodynamical environment (which can be other
polymer chains [14], liquids, or surfaces [15]). Clearly,
because of the restricted computation time and the com-
putation memory, such simulations are only possible for
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short chains and small volumes. In the second case
one uses effective external forces and friction coefficients,
which describe the interaction with the thermodynamical
bath (see, for example, [16]).

In most numerical and analytical studies of a polymer
chain in a simple liquid it is reasonable to use one con-
stant friction coefficient 7 for the description of the Brow-
nian behavior of each monomer. The microscopic inter-
actions between chain and liquid (hydrodynamic interac-
tion, Oseen tensor) are reduced to this one free parameter
n (a second parameter is the strength of the thermody-
namic noise, but this value is connected with the friction
coefficient by the fluctuation-dissipation theorem).

Unfortunately, an analytical formulation of an equa-
tion of motion for a polymer chain in a frictionless lig-
uid (called an Euler fluid) is not possible by using the
typical above- mentioned standard procedures (because
1 — 0 follows a vanishing interaction between chain and
liquid). On the other hand, because of the numerical re-
strictions, it is reasonable to obtain an effective equation
(e-g., an equation which contains only the relevant poly-
mer chain coordinates) for such a polymer chain. There-
fore, we need at first a realistic analytical description for
this problem on a microscopic level.

II. MODEL
A. Hamiltonian for the liquid

We start our investigation with a description of the lig-
uid. We get, for the simplest case (N identical molecules
with radial symmetry, only two-body interactions), the
Hamiltonian

p; 1
HL= 2m+§izj'v(l','—l'j). (1)

1

For the following considerations we use the mass density
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N
r) = Z 5(r —r;) (2)

and the local current density

N .
- Z%&(r—ri), (3)

which is connected with the local velocity v by the rela-
tion j = pv. Introducing the hydrodynamic potential ¢
with v = V¢, we get the Hamiltonian

Hy= / d*rp(r) Vo(r)®

+//ddrddr'p(r)v(r —1')p(r) (4)

in the special case for liquid without turbulence and fric-
tion. It is simple to prove that the field ¢ corresponds to
the field momentum p [17].

The general representation of (4) can be obtained from
the Lagrangian [18,19]

L=—p(,\¢:—<i>+";)—u[p] (5)

with the potentials ¥, ® and ), the local density p, the
density dependent intrinsic energy u[p] [determined by
the functional [ d¢rd®r’p(r)v(r —r’)p(r’)], and the gen-
eral local velocity v = AVW — V®. This Lagrangian
guarantees the continuous equation p + V(pv) = 0 and
the full frictionless Navier-Stokes equation (Euler equa-
tion)

9u(p)

dp =0

v+V+V

under consideration of the boundary conditions A + v -
VA=0and ¥ + v-V¥ =0. From (5) the Hamiltonian

follows
m= [ [0

Here the local current density j = pv must be expressed
by the field components ¥,®,A and the field momenta
8L/6® = p and L/6¥ = —Ap = £ (Note that §L/5) =
0.) For the following calculations it is sufficient enough
to use the harmonic representation of the Hamiltonian
(6). We get

IO e r]] . (6)

Hp = %/d“r [lﬁ(V‘I’)2 —2(V¥)-(Ve) + £:( o) ]

+% //ddedr’ép(r)v(r —1')op(r'). ™

with the deviations from the averaged values 6§ = & — &
and ép = p — p (Note that from the mass conservation
it follows that [dpd?r = 0.) The equation of motion

for W is given in this harmonic representation by ¥ = 0,

e.g., ¥ is a time-invariant function. Therefore with the
transformation ¢ = & — ¥€p~! Eq. (7) becomes

H= / drp(V)?
+% //ddrddr’ép(r)v(r —r')dp(r') . (8)

Clearly, (4) is equivalent to the harmonic representation
(8) of the full hydrodynamic field system [defined by (5)],
because all “turbulence” contributions to the full hydro-
dynamic equations (determined by the fields ¥ and &)
are of higher order.

B. Hamiltonian of the polymer chain

The Hamiltonian of the chain (length N, radial sym-
metric monomer structure) is determined by

N

2
P+ VIR] (9)

He =
(p; momentum of the ith monomer, R; the coordinate
of the ith monomer, and M the mass of monomers). The
potential V[R] contains the contribution of the interac-
tion between consecutive monomers along the chain and
all other intramolecular interaction terms (for example,
excluded volume effects). It should be remarked that
H¢ contains only the coordinates of the center of mass
of the effective monomers. The contributions of all other
degrees of freedom (bond length and bond angle fluc-
tuations, rotations of side groups) are neglected for the
calculations following in Secs. IV and V.

C. Interaction part

The main contributions of the interaction between
chain monomers and liquid molecules are based on a sum
of two body potentials w(r)

H,_ZZ R; —r1j) . (10)

i=1 3

Using the definition of the density (2), the interaction
can be written as

N
Hy = %Z/ddrp(r)w(Ri —r). (11)

As a result of these consideratious we get the full Hamil-
tonian of the liquid- polymer chain system

N
H=Ho+ 2y [dairsoww(®i—x)
+g [ dravey
]- I ! rI
+§//ddrddr Sp(r)o(r —)sp(r') . (12)



50 EQUILIBRIUM PROPERTIES OF A POLYMER CHAIN IN AN ...

(Irrelevant constant contributions are neglected.) After
a simple Fourier transformation, (12) becomes

. _
H=Ho+ —= 3 Spw(k)gx+ 5K | o |
k

mVV
+ 2B 5 2 (13)
with
— _l_ eik-r
é(r) = Wiz ; bre™ ", (14)
5p(x) = :}_‘; 3 bpuetr (15)
k
and
v(r) = %Zv(k)e_ik" , (16)
k
w(r) = %Zw(k)e_ik" . a7
k
The value
N
gk = Z exp{ik - R;} (18)

T

is the Fourier transformed density of the polymer chain.
Note that the observables §px, ¢k, and gy are invariant
against a complex conjugation and a simultaneous change
k — —k. From this it follows that the values of one-
half of the k space are dependent on the values of the

2141

8px, ¢x, and gi are independent values. Therefore, it is
reasonable to separate this observables in the real and the
imaginary part, from which each part occupies one-half
of the full k space (for example v/2Re¢y — ¢i occupies
one-half of the k space and v/2Im¢yx — @i occupies the
opposite half of the k space). The Hamiltonian (13) is
invariant against this definition, e.g., it is possible to use
(13) with the new meaning of the variables §pyx, ¢x, and
k-

III. PROJECTION FORMALISM

The Hamiltonian (13) determines the behavior of the
general liquid-polymer chain system. On the other hand,
the liquid plays the role of a thermodynamic bath for the
motion of the polymer chain. Therefore, the knowledge of
the motion is irrelevant, e.g., it is possible to average over
the degrees of freedom for the liquid. We expect a change
of the chain potential V[R] and the introduction of an
effective friction and stochastic forces in the equation of
motion of the relevant coordinates R as a result of the
interaction between bath and polymer chain.

The usual formalism for the determination of an ef-
fective equation of motion for the relevant coordinates
(coordinates of the polymer chain) is based on a path
integral representation [20] and is similar to the projec-
tion formalism in Liouville space [7,21,3]. Here we show
briefly the main point of this idea. Starting from the
statistical density operator 5(t), we get

opposite half, e.g., the observables of one-half of the space p(t) = exp{—ih~Ht}5(0) exp{ih~* Ht} (19)
are sufficient for the description of the Hamiltonian. On
the other hand, the real part and the imaginary part of or
|
(¢,R ‘ [S(t) | R’,¢') — //d¢lldeld¢IIIdell
xp(¢, R, t; 0", R”,0)p(¢", R",ihB; " ,R",0)p(¢"",R",0;¢',R', 1) , (20)
|
with 8 = 1/kT and the evolution matrix From (20) it is reasonable to collect the different parts
of (¢,R | p(t) | R',¢') to one common path integral
.S[¢,R] with an integration curvature in a complex time space
. A — 3
p(¢7R)ta¢ ,R,O) = /D[d)]D[R]exp{z—-h— . (t—)O—) Zh,B—)t'F’Lﬁﬁ)
The effective equation of motion for the polymer chain
(21)  follows from the total time evolution of the density ma-

Note, that the path in (21) satisfies the boundary con-
ditions ¢(t) = ¢, R(¢t) = R, ¢(0) = ¢', and R(0) = R'.
The action S(¢, R) is given by the usual definition

t - -
S[é, R] = /0 L(é, 6, R, R)d

[the Lagrangian L follows from the Hamiltonian (13)
by the typical Legendre transformation]. The imagi-
nary part (0 — ihB) of the path integral in (20) is
a result of the statistical weight p(0) ~ exp(—gH).

trix (¢, R | p(t) | R',¢’) by the projection of the relevant
observables (e.g., the calculation of the trace for the ir-
relevant fields ¢)

(R | p(t) | R) = trg(, R | p(t) | R',¢") -

The determination of this trace is a standard procedure
and follows straightforwardly [because of the harmonic
(Gaussian) character of the ¢ part of the Hamiltonian
(13) and therefore the Lagrangian L, an exact determi-
nation of this trace, is possible]. We get
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®|p) | R) = [ DI exp{ “R’} (22)

The effective action S.(R) is given by the sum of the ac-
tion of the free polymer chain S., corresponding to (9)
and additional parts py, which results from the inter-

|

_ku(k)* 7

B hﬂ
l‘k—/ dT/
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action between the bath (Euler fluid) and the polymer
chain. We get the representation

Se(R) = So(R) +i ue (23)
k

with

By o X<~ Tak(imaetir!)
VP cosh(y/v(k) p—p—k + it — )

ha © . kw(k)?
—1 dr dt’
/o A 2m2V /v(k)

sinh(y/v(k)p%2 =k

9 (i7) g (t') — gie(t’ + iRB)]

© g [ g Fek)VE 8.\ ol TR R — 1"
+/0 dt/o dt 2m2V\/v_(—15C0th (\/'u(k)p 5 k) [Vv(k)pk(t' —t")]

= gk(t” + 7))o (t')

oo t'
+1 / dt’ / dt"
1] 0

i kw(k)?
Z2m"’VIs:'v(k)

X [gx(t")

kw(k)?

mZV ko (k) cos[v/v(k)pk(t

kw(k)?

oo 2 g
—z’/o dt’mz—Wk—)[gk(t') ‘gk(tl+ih:3)2]_/0 dr

The function xk(t) is defined by
cosh (\/v—(fc—)ﬁﬁzék — 'r) 2

sinh (W%ék) - \/Uv‘:)—ﬁka(ﬂ
This general equation implies also quantum mechanic ef-

fects. The last three terms correspond to the correction
of the potential V(R), for which we can write

w(k
AV = 2m2VZ v((k)) (25)

Using the definition

Xk (T) =

1 w(k)?

u( )=§;L§,7(E)“, (26)

we get an additional two-body (radial symmetric) inter-
action between the monomers of the polymer chain

AV = ——‘17 Zu(k)gﬁ = —Zu(| R;,-R;|). (27)
k i,j

This potential part of (24) can collect in the potential
of the polymer chain [given by the action S, in Eq. 23].
For example, for the preceding calculations that means

= g(t' + ihp)]

(95(0) + 9u (i5B)] / "~ dt” cos| /o () pkt') g (¢

// [Qk(t” gk(t"+iﬁﬁ)][gk(t’)+gk(t'+iﬁﬁ)]

— gk(t' +1h0)]

i) 24)

that V(R) is the sum of the bare potential and the cor-
rection AV, i.e., the potential of the free Hamiltonian
gets a correction term (27), which has a negative sign,
e.g., as a result of the interaction between the liquid and
the polymer chain which follows an additional attractive
potential. (Note that u(k) is always positive because a
negative u(k) and therefore a negative v(k) [see Eq. (26)]
correspond to an instable liquid.) If all topological and
molecular details of the monomers and liquid molecules
become irrelevant (which is the case if only large scale
effects are of interest), it is possible to reduce the inter-
action potentials to d-like functions, i.e., v(r) ~ vod(r),
w(r) =~ wed(r), and u(r) =~ ued(r). From Eq. (27) an
additional effective attraction of the monomers follows
and therefore a decrease of the excluded volume potential
Vess = Vez vol — U follows as a result of the interaction
between chain and the liquid.

From the effective action (23) and (24) we get the
mean- field approximation for the equation of motion
by using the saddle-point method. For large tempera-
tures (A8 is sufficiently small), it is reasonable to neglect
the contributions to the effective action along the imag-
inary axis (from O to i%3) and use the new coordinates
R =Y +yand R =Y —y for the two parts of the path
parallel to the real axis of the complex time plane. Hence
we get, for the effective action in the second order of the
expansion in powers of the small difference value y,
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Y2

L,V (Y) a(t,))

th (VoR)7

k() — ) = 2"—‘9“) cos[y/o(R)AE(t — ¢")] .

The equation of motion for Y follows from the variation of the action (28)

8S.

(i 5D) [T

—22/0 dt'zk:nk(t - t’)ag'}‘,fj)

The equation of motion of y(t) is an homogeneous
integral- differential equation, e.g., the influence of Y
on the motion of y(t) is given by a multiplicative cou-
pling. The motion of these variable is determined by
some nonlinearities (e.g., the behavior of this variable
shows a deterministic chaos) and it is reasonable to inter-
pret the inhomogeneous part of (31) as an external noise
or stochastic force, from which the evolution of Y (t) was
driven. Using (28) and (31) it is simple to show that the
correlation function of the stochastic force f

f.(t)—ZzZ / dt' e (t — agk(t) a%“}ft) i) (32)

is determined by

¢y 29(t) 99 (t')
aY; 9Yy;

(i) 1)) = Za (t- (33)

which corresponds to the fluctuation-dissipation theo-
rem.

IV. CLASSICAL EQUATION OF MOTION

For the most applications it is sufficient enough to use
the classical relations, e.g., we set & — 0 (and therefore

Y - R). With

KB (Rq(t) — R,(¢), ¢ — )

= Z ki (t — ')k kP ekRi—R;) (34)
k
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Ogx (t’) Ogx (t") (gl "
a Yy ()95 (t")
Y o ay.ﬂ yoo I
Agx (t') ¥ 6gk(t ") rB (411
ave | WO W (28)
.‘I y=0
) cos[v/v(k)pk(t' —t")] (29)
(30)
agk(t) Agx(t') ’
a},ia =0 a},.?ﬁ yzoyf(t)
agk(t ) B (4!
| O ()

and (18) the equation of motion for the polymer chain in
an Euler fluid follows

8V(R)

MR () + o 72

+> / dt'k(Ri(t) — R;(¢),t — )P RI(Y) = fu(t)
(35)

The stochastic force is determined by the correlation
function

(F()55() = Sa(R(E) ~ R(),t — )

=kTk(R(t) —R(t'),t - t') . (36)
The equation of motion is determined by an external
stochastic noise f with a correlation function «, which is
dependent on the time difference and the history of the
polymer chain [defined by the difference R(t) — R(t')].
The relaxation function determines an effective friction
as a result of the interaction of liquid-polymer chain.
This friction is connected to the noise by the well known
fluctuation-dissipation theorem [see Eq. (36)]. The struc-
ture of (35) is equivalent to a Langevin equation with
external stochastic forces and a memory (or relaxation)
function, which is dependent on the time and the his-
tory of the chain configuration. The cause for this relax-
ation term is the interaction with the liquid. Each motion
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of a monomer R;(t') generates phononlike excitations at
time ¢'. The interaction of these liquid phonons with a
monomer at a time t > ¢’ in R; determines the functional
structure of the memory, i.e., we have a dependence of
the time difference ¢t — ¢ and of the distance between the
creation point R;(t') of a phonon and the interaction of
this phonon with another monomer in R;(¢). Note that
Eq. (35) does not contain the contributions of the fast
modes of the internal degrees of freedom of the monomers
(discussed in Sec. II B). The consideration of these terms
with very short time scales leads, in the course of pro-
jection formalism, to an additional simple friction term
¢oR;(t) and a second stochastic force ¢;(t) with a corre-
lation function

(82(6)¢5 (¢))) = KTCod (t — )87 65 (37)
and Eq. (35) now becomes the generalized form
pa Ha BV(R)

3 [ denre Ry @) 0P
= fi(t) + ¢:s(t) = Fi(t) . (38)

V. DISCUSSION OF THE RESULTS
A. Mean end to end distance

For the determination of the mean end to end distance
we use the typical mean-field approach, starting from the
effective free energy of the polymer chain

R? _ N?

F=—+Vess— . 39

N T Verr g (39)
Here fo ~ Vefs = Vez vol —Ug is a value for the effective
interaction between two arbitrary monomers. The mean
end to end distance (determined by the minimum of F,
OF /OR = 0) becomes, in the mean field approximation,

R~VJ5 N+, (40)

or by using (26)
J

1t N N
Coxp(t) + W:ILOXp(t) + IN / dt'/ / dsds’cos(wps)
0 o Jo
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Rs

N3
with the polymer specific constants ag and a; and the
value

=ag—a;X? (41)

x = Wovp
Com

(co = \/vop is the sound velocity of the liquid), which is
determined by the properties of the liquid and the inter-
action between the polymer and the liquid.

B. Dynamical behavior

For the determination of the dynamic properties, we
use the customary approximation M = 0 and neglect the
(effective) excluded volume potential. For the potential
between consecutive monomers it is reasonable to use a
simple harmonic form, i.e.,

V(R
VR o polBr, + R, 2B (42)

with the elastic constant pg = 2kpT /I (kg is the Boltz-
mann constant) Hence, by using the Fourier representa-
tion

R, =& +2 Z &pcos(wpn) (43)
p=1

(wp = 2mp/N) we get, in the continuous representation
[Rn — R(s), n (discrete) — s (continuous variable)],

. 1 t N N
Cobg (t) + wlnoba (t) + ¥ / dt’ / / dsds'cos(wps)
0 0 0

x Y ra(t — t')k*k? exp{ik[R(s,t) — R(s',')]}
k

x (53(#) +2) g’{j(t')cos(qu')) =F2(t) .
(44)

The evolution equation for the correlation function
(E2(t)ED (1)) = Xp(t—t')8,p0 6% follows from (44) and un-
der consideration of the exact relation ({3 () Fpr (t)P) =0,

x Y rx(t — t')k*(exp{ik[R(s,t) — R(s',1)]} (5o(t') +2) fq(t')COS(qu')) £(0))
k q=1

. 1 K 1.2 ! AN
zcoxp(t)+w§poxp(t)+3—NA dt’gnk(t—t)k Q(k,p,t —t')xp(t') = 0. (45)
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Q(k,p,t) is the Fourier transformed dynamic structure
factor Q(k,s—s',t—~t') for two monomers in the distance
As = s — s’ along the polymer chain. For the determi-
nation of x4(t), we use a perturbation theory in terms
of ug. Therefore, we substitute in the first order of the
perturbation theory (linear in uo) the dynamic structure
factor by

Q(kap,t) - Q(k,p,t) |1-l0=9 N

This value can be determined straightforwardly by the
simple Rouse theory with the friction coefficient (o and
the elastic coefficient ug, i.e., by the solution of the evo-

lution equation for the unperturbed correlation function.
We get [see Appendix A, Eq. (A12)]

Q(k, p, t) = Q(k, p)e* (P1t+Davd) (46)

with the static structure factor Q(k, p) [see Eq. A5]. The
diffusion coefficient D; is determined by (A1l) and the
anomalous diffusion coefficient D, by (A9). With the
value

Yo(t) = xp(0) — x(t)
it follows, for the Laplace transformed solution of (45),
that
kTN -1

Yolz) = 2[2Co + pow? + M(p, z)]’

(47)

in which the “self energy” term is given by

Nzu o
M@, = 2 [ dk(k‘*n(k,p)

x/ dte“‘tcos(cokt)e_kz(D‘t"'D"/E)) . (48)
0

For the relaxation modes (this means zlpcy ! < 1, i.e, the
velocity of the liquid phonons is very high in comparison
to the effective diffusionlike motion of the monomers) we
get, by using the approximations in Appendix (B),

’i:BTN—1
Yo(z) = 2 172 (49)
z[zCefs + pow2 + Cwp' “22]
with an effective friction coefficient
/3
11 1\ uocl
ff = = 50

and

6
C = _\/__;‘_0_ (51)
473/2 ldcy

Straightforwardly, (49) leads to an effective diffusion co-
efficient

kT

Dess = _NCeff

(52)
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of the polymer chain (or the center of mass of the polymer
chain) in the Euler fluid.

In principle, the N dependence of the diffusion co-
efficient is the same as in the simple Rouse case, but
the fast phononlike modes in the Euler fluid realizes
a change of the temperature behavior. For large tem-
peratures T or large pure friction coefficients (o (note
that (o results only from the internal degrees of free-
dom of the polymer chain), it follows that (.zs = (o and
therefore D.s; ~ T(;'/N. In the opposite case (low
temperatures or low bare friction coefficient (q), we get
Ceps = C(";/:’T’z/3 and therefore D.gs ~ T5/3C0_2/3, ie.,
a second (anomalous) temperature behavior of the diffu-
sion coefficient.

C. Conclusions

We have shown that the behavior of a free chain
in a frictionless (Euler) fluid is strongly determined
by mechanical properties of this liquid (sound velocity,
and density). Particularly, the characteristic mesoscop-
ical parameters of a chain in the equilibrium state —
the mean square radius of gyration or the end to end
distance— shows an additional negative part. In the
case of a sufficiently large interaction energy wqo between
monomers and liquid molecules or sufficiently low sound
velocity, this additional term becomes strong enough to
compensate for the excluded volume potential (i.e., the
monomer-monomer interaction) and the polymer chain
shows a collapse. It should be remarked that this effect
is well known, but this important property now has an
explicit representation.

A similar situation follows for the determination of dy-
namical properties of the polymer chain in a frictionless
liquid. Equations (49)- (51) are an explicit representa-
tion of the frequency spectra and the effective friction
coefficient, which depends on the temperature and the
microscopical parameters of the polymer chain, the lig-
uid, and the interaction between both. As expected, we
get the well known classical temperature behavior and
dependence on the chain length of the diffusion coeffi-
cient for high temperatures, whereas an anomalous tem-
perature behavior occurs in the low-temperature regime.

APPENDIX A
Approximation of the dynamic structure factor

Using Y,(t) = xp(0) — xp(t), we get, for ug = 0, the
typical Rouse equation

. kgT
GV + powlY® = % (A1)
with the well known solution
t 2
BEN1-—e"r
() _to
v = oI (A2)

272 pz
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and the Rouse time

BN?¢o
22k BT )
For the dynamic structure factor of two monomers in s
and ¢ it is reasonable to use the approximation

2k, s, s',t) = (exp{ik - [R(s,t) — R(s',0)]})
2
~ exp{—%([R(s,t) - R(sl’O)]2>}

~ Q(k, s — ) exp{ —k?>Y " (¢)}
x exp{—2k’®(s,s',t)} (A4)
Here Q(k, s — s’) is the well known static structure factor

k2
Q(k,s — s') = exp s |s—s' |12

with the Fourier transformed form for sufficiently large

N

TR = (A3)

(A5)

1 [N 1 kg
Q(k,p) = ——/ dsQ(k, s) = —»62—— (A6)
N V(58) e
and
®(s,s',t) = ZCOS(wps) cos(wps') YO (t) . (A7)
p=1

From (A5) follows that the main contrlbutlons to the
dynamic structure factor are expected for s = &', i.e., it
is reasonable to approximate ®(s,s’,t) by ®(s,s t) We
get

o o]

®(s,s,t) = Zcos(wps)sz(O)(t)
p=1
s / ~ apy 1)
2 Jo p
= %sz/i (A8)
with
kpTI2
_ A9
D, oo (A9)
J
,/Gwp 2, r +
m(p, ) ~ / Vaeo 2/ dt cos(yr)e =TV (V)

/(>

Sy
<),
el [
R

On the other hand, we get

Y O (t) = Dyt (A10)
with the bare diffusion coefficient
kgT
D, = —. All
=2 (A11)

In summary, the approximation for the dynamic struc-
ture factor is determined by

Q(k, p, t) = Q(k,p)e ¥ (Prt+DavD) (A12)

APPENDIX B: DETERMINATION OF THE
SELF-ENERGY PART M(P, Z)

From (48) and (A5), we get

2NZ'!L0

M(p,z) = ﬁg—m(p’z) (Bl)

with the integral

(o9 y6
= dy————
/0 Yyt + 3602
X / dt cos(yT)e"”"Te-yz('r1 WV ) (B2)
)

Here we have introduced the elementary time
lo

To = —
Co

m(p, z)

and the dimensionless values

loco I3co

D—1’ T2 = D_g’

which characterized the ratio between the sound velocity
and the diffusion velocity of the monomers (72) and the

center of mass of the polymer chain (71), respectively.
Therefore, we get the relation

1<<Tz<<71.

™ =

(B3)

Splitting the integration over y into (B2) into two regions

(0, /6wy) and (,/6wp,o0) and using the typical cutoff

representation

/ dy--- — / - dy,
0

we get approximately (z = 27)

(/ dfcos(yr)e-“e—fvﬁﬁn)
(36 / dtcos(yﬂe-“e—mw?:ﬂ:,,))

2, r Ve
dtcos(yr)e *7e ¥ itV ) )

dtcos(y7)e PR R RVE +°“’P)) =L+L+1Is. (B4)
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Now we get the following approximations for the region of the relaxation modes (z < 1):

3 11 1 1
L~ gﬁm(ﬁwp)l/z, L= 72_\/7?1-.(6)7_22/3’ Iy = 5\/7—’33(6“’?)1/2

and therefore Eq. (49) for Y,(z).
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